36safety2021-04-06 15:40:56


Fires involving lithium-ion cells are the result of electrolyte burning, which is a

hydrocarbon/airflame. Thus, many flame suppression agents will be effective

in suppressing flaming combustion. However due to the electrical nature of battery packs, particularly the high voltages associated with large format battery

packs, conductive suppression agents may not be a good choice. In addition, because of the potential for re-ignition due to cascading cell thermal runaway reactions, an ideal suppressing agent will stay suspended and prevent re-light of combustible mixture from cell hot surfaces. Suppressants shown to be

effective include: inert gas / smothering of flames (fire behavior testing data indicates that smothering is effective in preventing flaming, but will not cool cells and prevent thermal runaway propagation), carbon dioxide (Exponent

typically uses carbon dioxide extinguishers to suppress flaming of cells during testing – this will not cool cells and prevent thermal runaway propagation), water (anumber of sources have described the effectiveness of water to suppress

flaming and cool cells), and Halon.

涉及锂离子电池的火灾是电解质的燃烧,这是一个烃/ airflame的结果。因此,许多的火焰灭火剂会有效抑制焰燃烧。然而,由于与大幅面电池相关的电池组,特别是高电压的电气性质包装,导电剂抑制可能不是一个很好的选择。另外,由于复燃,由于级联电池的热失控反应的可能性的,理想的灭火剂将保持悬浮,并防止电池热表面的可燃混合物的重轻。表明灭火剂是有效的包括:火焰的惰性气体/窒息(防火性能测试数据表明,窒息是有效预防炽盛,但不冷静细胞,防止热失控传播),二氧化碳(指数通常使用二氧化碳灭火器测试过程中抑制细胞的有焰燃烧 - 这不会冷却电池组,防止热失控传播),水和哈龙。

There is limited published data regarding the selection of suppressants for use on lithium-ion battery fires. The design of suppression systems in battery manufacturing facilities is generally considered proprietary information and is not

publically available. Testing data that is available has been published is related

to very specific lithium-ion battery applications, primarily the suppression of

fires in air transport: fires that might occur in a passenger cabin, where very

limited numbers of cells could become involved and Halon extinguishers and water are available suppressants, and fires that might occur in aircraft cargo

holds, where Halon is the available suppressant. Full scale fire suppression

testing is necessary to evaluate specific storage configurations, quantities, arrangements and fire suppression system design criteria and overall



Navy Sea Systems Command released an Advanced Change Notice for

Lithium Battery Firefighting Procedures. In this document, the Navy

recommends (based on limited testing), the use of “a narrow-angle fog of

water or AFFF” to cool batteries, suppress “fireballs,” and reduce the likelihood of thermal runaway propagation.

The FAA studied suppression of lithium-ion batteries with water and Halon

1211, as these are typically available in hand extinguishers aboard

commercial aircraft. As a first choice, the FAA recommends the use of water to suppress fires involving notebook computers, because water will both

extinguish flames and suppress thermal runaway propagation. As a second

choice, the FAA recommends using Halon 1211 to knock down flames,

followed by deluge from available water sources (such as bottles of drinking

water). Halon 1211 alone will not prevent re-ignitions of cells due to

propagation of cell thermal runaway reactions. In FAA tests, application of ice did not sufficiently cool cells to prevent thermal runaway propagation.

海军海上系统司令部发布了一个先进的变更通知的锂电池消防手续。在该文件中,海军建议(基于有限的测试),使用的“窄角雾化水或水成膜泡沫“来冷却电池,抑制”火球“,并减少热失控传播的可能性。美国联邦航空局研究了锂离子电池的抑制与水和哈龙1211因为这些是通常可在手灭火器船上商用飞机。作为第一选择,美国联邦航空局建议使用水抑制涉及笔记本电脑的火灾,因水将两者灭火和抑制热失控繁殖。作为第二选择,FAA建议使用1211打掉火焰,其次是从可用水源(如饮用水)。 1211本身并不能防止因电池组的复燃,电池热失控反应的传播。在FAA的测试中,冰的应用程序没有充分冷却电池,防止热失控的传播。

In 2010, the FAA reported on testing lithium iron phosphate and 8-Ah lithium

cobalt oxide softpack polymer cells. Halon 1211 was able to successfully

extinguish flames from these cells.

In addition, the iron phosphate cells did not continue to vent or re-ignite once

the Halon 1211 was applied. However, Halon 1211 was not able to suppress

re-ignition of the soft-pouch polymer cells (cobalt oxide chemistry).


Halon 1301 is the least toxic of the Halon fire suppressants and is considered

to have superior fire extinguishing characteristics. In particular, it rapidly knocks down flaming combustion, has a penetrating vapor that can flow around

baffles and obstructions, leaves no residue, is noncorrosive, requires small

storage volumes, is non-conductive, and is colorless, which prevents the

generation of false fire alarms by obscuration. Halon does not act by

displacing oxygen, rather it acts by interfering with the chemistry of

combustion, specifically by terminating chain branching reactions that occur

in the gas phase in typical hydrocarbon/air flames. The fact that Halon is effective in suppressing lithium-ion battery flames is another indication that these

flames are substantially similar to typical hydrocarbon/air flames. Halon 1301 (bromotrifluoromethane) is a methane derivative. The bromine atom confers

strong fire suppressant properties, while the fluorine atoms confer stability to

the molecule and reduce its toxicity. Bromine atoms interfere with the free

radical and chain branching reactions that are important in combustion.


Halon 1301 is generally considered very effective for electrical fires (Class C fires),flammable liquid and gas fires (Class B fires), and surface-burning flammable solid (such as thermoplastic) fires. However, Halon 1301 has minimal

effectiveness on reactive metals, rapid oxidizers, and deep-seated Class A fires. Halon 1301 is minimally effective on deep-seated Class A fires

because it works by interfering with the chemical reactions that create flames; it does notcool the fuel feeding the fire. Thus, while Halon 1301 can extinguish the flaming portion of a Class A fire, the glowing deep-seated portion of the fire can continue to smolder and spread at a reduced rate.

The strong effect of Halon addition can be seen upon examining the flammability limits of fuel/air/Halon mixtures, and comparing them with the flammability

limits of fuel/air/inert diluent mixtures. When small quantities of Halon are

added to a fuel/air mixture, they narrow the range in which that mixture is

flammable. Halon is far more effective at narrowing the flammable range than

an inert diluent. If sufficient Halon is added, the flammable range of a mixture, even at an elevated temperature, is eliminated and the mixture cannot be

ignited. Note that production of Halon was banned by the Montreal Protocols, as this material contributes to the destruction of the ozone layer. Halon in use today is from recycled sources only, primarily for protection of aircraft.



Table 12  shows the average percent by volume of agent in air required to extinguish a flame. It also shows the design concentrations for a total flooding system required to suppress flaming combustion. The design concentrations for flame extinguishment include an added safety factor over the required

concentrations. These design recommendations are approximately 5% for

most fuels.


In 2004, Exponent conducted FAA-style testing of the effectiveness of Halon 1301 insuppressing lithium-ion cell and battery pack fires. A series of Halon

1301 suppression tests were conducted with bare 18650 cells and computer laptop battery packs. The bare cells were not electrically connected, but were taped together. Ignition was accomplished by igniting a pan of propanol below the cells. Halon 1301 was applied late in each test, once cells had begun to

vent with burning jets. Within seconds of application, all flames were extinguished and no additional flaming was observed for the continuing duration of the test. When Halon 1301 was applied there was a precipitous drop in the chamber temperatures and heat flux measurements.

This was entirely consistent with flame suppression. Chamber temperatures and heat fluxes remained low for the duration of the testing. Note that Halon 1301 application did not cool the cells (Figure 42). Thermal runaway of individual cells and cell venting continued to occur after Halon 1301 was applied. Examination of all cells from Exponent’s Halon 1301 tests showed that they had vented. However, with Halon 1301 present, this process did not result in flaming

combustion. Exponent concluded Halon 1301 is very effective in controlling burning lithiumion cells.

In 2006, the FAA conducted similar tests of Halon 1301 suppression on 18650 lithium-ion cells at 50 and 100% SOC.The FAA observed similar behavior to test results reported by Exponent.

2004年,指数进行了哈龙1301 insuppressing锂离子电池和电池组火灾的有效性FAA式测试。一系列的哈龙1301年抑制试验是用裸18650电池和笔记本电脑电池组进行。裸电池没有电连接,但被粘贴在一起。点火被点燃细胞下面丙醇的平移完成。哈龙1301在每个测试后期应用,一旦细胞已经开始用燃烧的飞机发泄。在应用秒钟,所有明火被扑灭,并观察到了测试的持续时间不断没有额外的炽盛。当哈龙1301应用于有在室内的温度和热通量测量值的急剧下降。


2006年,美国联邦航空局50 18650上的锂离子电池进行哈龙1301的抑制类似的测试,100%SOC. 联邦航空局观察到类似的行为来测试通过指数报告的结果。


Lithium-Ion Batteries Hazard and Use Assessment







联系邮箱: info@36safety.com
微信:36safety 网址:36safety.com